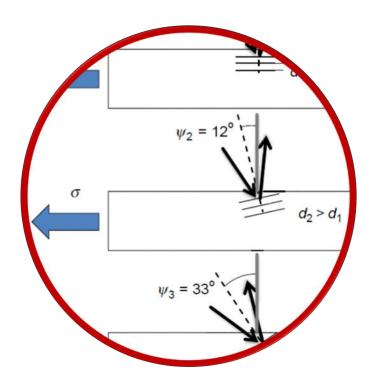

Disclaimer

This course material may contain copyrighted material the use of which has not been specifically authorized or licensed by the copyright owner. This material is used here for teaching purposes constituting a fair use as provided by Swiss copyright law (URG Art. 19 Abs. 1 lit. B).

The content of this presentation is meant for use as part of the course «Thin Films and Small Scale Mechanics» offered at Empa Thun. It is intended solely for the use of the registered course participants. Distribution to individuals who are not registered course participants is prohibited. If you are not a registered course participant, you are hereby notified that any review, dissemination, distribution, duplication or other use is strictly forbidden.


Thin film and small scale mechanics

Dr. Jakob Schwiedrzik, Prof. Johann Michler

Ch. 1: Introduction

Course outline

Content:

- Ch.1: Introduction
- Ch.2: Microstructure of Materials
- Ch.3: Materials mechanics
- Ch.4: Thin film mechanics
- Ch.5: Size effects
- Ch.6: Small scale mechanical testing
- · Ch.7: Outlook

Course schedule

Time/Date	7.11.	8.11.	9.11.	10.11.
Room	L504	L504	L503	E3
9AM to 10AM				
10AM to 11AM				
11AM to 12PM				
12PM to 1PM				
1PM to 2PM				
2PM to 3PM				
3PM to 4PM				
4PM to 5PM				
5PM to 6PM				

Lecture
Lunch
Exam

Literature

Materials Science and thin films:

- William D. Callister Jr., David G. Rethwisch, Materials Science and Engineering: An Introduction, 10th Edition, ISBN: 978-1-119-40549-8, (2018), 992 Pages
- Ohring Milton (2002) Materials Science of Thin Films, Deposition and Structure, 2nd edition (2002), San Diego: Academic Press

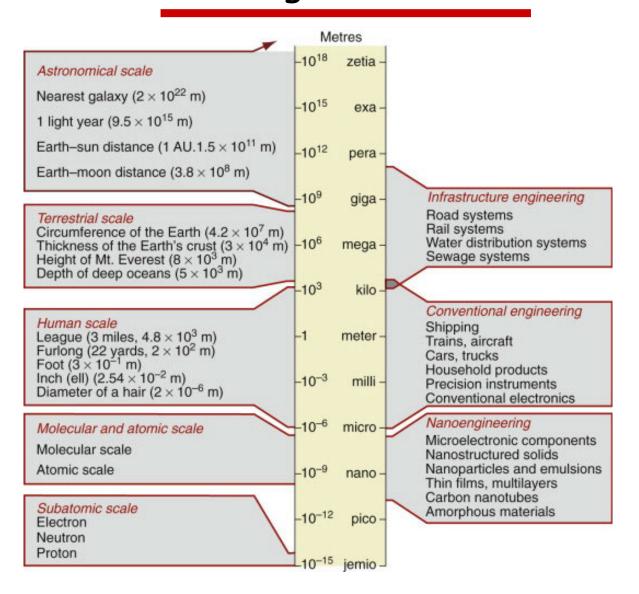
Mechanics:

- J. Mencik, Mechanics of Components with Treated or Coated Surfaces, Doordrecht (Netherlands): Kluwer Academic Publishers (1996)
- L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press (2003)
- B. Bhushan (ed.), Handbook of Micro/Nanotribology 2nd edition, CRC Press (1998)
- B. Bhushan (ed.), Handbook of Nanotechnology, Springer Berlin (2004), ISBN 3-540-01218-4
- J. Rösler, H. Harders, M. Bäker, Mechanisches Verhalten der Werkstoffe, Teubner (2003), ISBN 3-519-00438-0

Nanoindentation:

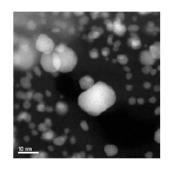
- A. C. Fischer-Cripps, Nanoindentation, Springer New York (2002), ISBN 0-387-95394-9
- http://www.nanoindentation.cornell.edu/home_main.htm

Classification of "nano"

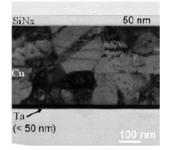

Physics: manipulation of individual atoms

Chemistry: manipulation of 10²³ atoms

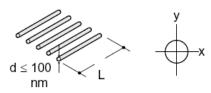
Materials Science: materials property changes with at least one dimension smaller 100nm


Engineering: accuracy (position etc.) below 100nm

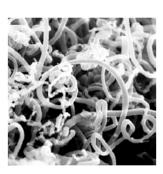
Length scales


0-D to 3-D nanomaterials

0-D
All dimensions (*x,y,z*) at nanoscale

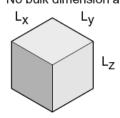

2-D One dimension (t) at nanoscale, other two dimensions- $({}^L x, {}^L y)$ are not ${}^L x$

 $t \le 100 \text{ nm}$

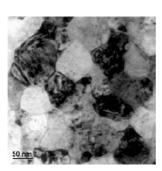


Nanoparticles

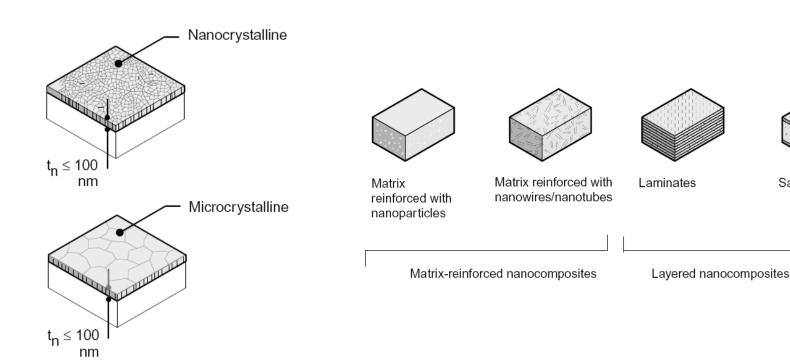
1-D
Two dimensions (x,y) at nanoscale, other dimension (L) is not



Nanowires, nanorods, and nanotubes

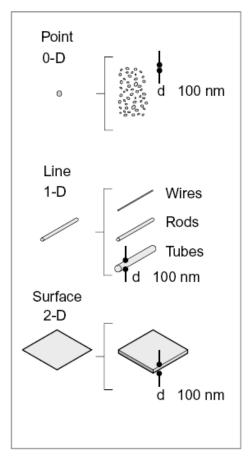


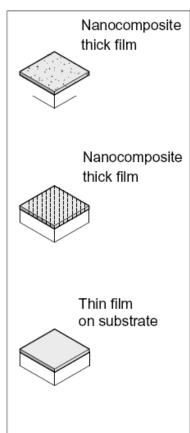
3-D No bulk dimension at nanoscale

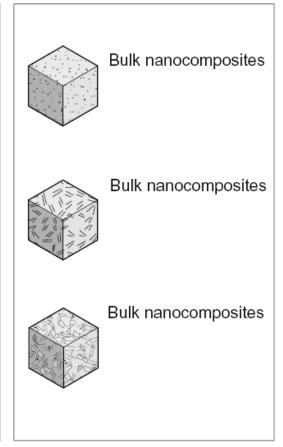

Nanocoatings and nanofilms

Nanocrystalline and nanocomposite materials

Internal vs. external dimension




Sandwiches


The LEGO game

Basic Geometry

Large Scale Forms (dimensions at micro or macroscale)

